“要实现‘爱因斯坦局域性’条件,我们需要在空间与时间上都能精确控制实验仪器。我们的光学仪器分布在校园内的两个实验室中,光信号与电信号的时序经过了精确的设置。”文章第一作者王凯说,该实验不但证明了光可以同时处于波动性或粒子性的量子迭加,而且还证明了这种波—粒的量子迭加态是可调控的,这为量子光学和量子信息处理的发展提供了新方法。
3日,记者从南京大学获悉,最新一期的自然杂志子刊《自然·光子学》发表了该校物理学院马小松教授团队的研究成果——首次演示了单光子波动性和粒子性的非局域可控迭加。
光究竟是粒子还是波的争论经历了几个世纪。20世纪在量子物理的建立过程中,人们发现了光的波粒二象性,即光既是粒子,也是波,处于波与粒子的迭加态。
那么,是否可以找到某些控制手段,让单个光子按照需要仅表现为粒子,或者仅表现为波?由物理学家约翰·惠勒提出的延迟选择实验显示,一个外部的观测者可以通过对实验装置中一个光学元件的操控,来主动选择单个光子表现出波动性还是粒子性,甚至在光子进入实验装置之后再做选择,选择依然是有效的。
马小松说,他们此次发表的成果,是在惠勒延迟选择实验的基础上,提出并展示了一个新的非局域量子延迟选择实验。
在该实验中,团队使用了另外一对纠缠光子作为控制单元,利用纠缠光子对去调控在波动性与粒子性之间切换的实验主体光子。为了实现严格的非局域量子控制,控制单元远离实验主体单元,也就是要满足物理学家所说的所谓“爱因斯坦局域性”条件。
“要实现‘爱因斯坦局域性’条件,我们需要在空间与时间上都能精确控制实验仪器。我们的光学仪器分布在校园内的两个实验室中,光信号与电信号的时序经过了精确的设置。”文章第一作者王凯说,该实验不但证明了光可以同时处于波动性或粒子性的量子迭加,而且还证明了这种波—粒的量子迭加态是可调控的,这为量子光学和量子信息处理的发展提供了新方法。(金凤 齐琦)
KPHZ国际技术转移中心致力于搭建促进国际技术转移的专业化服务平台。中心成立专家委员会,为引入的资源服务平台把关,中心以
电子信息、智能制造、新材料、新能源、生物医药、节能环保等技术领域为关注重点,先进技术引进和技术转移包括美国、英国、德国等国家。
KPHZ整合优质资源,提供专业的国际技术转移服务,通过技术授权、技术转让、技术咨询、技术服务、投融资服务等模式,实现“孵化成果、孵化企业”,促进企业高新技术产业化发展。